Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Cell Prolif ; : e13645, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38601993

RESUMO

The biogenesis of exosomes that mediate cell-to-cell communication by transporting numerous biomolecules to neighbouring cells is an essential cellular process. The interaction between the transmembrane protein syndecan-4 (SDC4) and cytosolic protein syntenin plays a key role in the biogenesis of exosomes. However, how the relatively weak binding of syntenin to SDC4 efficiently enables syntenin sorting for packaging into exosomes remains unclear. Here, we demonstrate for the first time that SDC4 can undergo liquid-liquid phase separation (LLPS) to form condensates both in vitro and in the cell membrane and that, the SDC4 cytoplasmic domain (SDC4-CD) is a key contributor to this process. The phase separation of SDC4 greatly enhances the recruitment of syntenin to the plasma membrane (PM) despite the weak SDC4-syntenin interaction, facilitating syntenin sorting for inclusion in exosomes. Interestingly, phosphorylation at the only serine (179) in the SDC4-CD (Ser179) disrupts SDC4 LLPS, and inhibited phosphorylation or dephosphorylation restores the SDC4 LLPS to promote its recruitment of syntenin to the PM and syntenin inclusion into exosomes. This research reveals a novel phosphorylation-regulated phase separation property of SDC4 in the PM through which SDC4 efficiently recruits cytosolic syntenin and facilitates the biogenesis of exosomes, providing potential intervention targets for exosome-mediated biomedical events.

2.
Neurochem Int ; 176: 105727, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555055

RESUMO

Temporal lobe epilepsy (TLE), the most common type of drug-resistant epilepsy, severely affects quality of life. However, the underlying mechanism of TLE remains unclear and deserves further exploration. Sorbs2, a key synaptic regulatory protein, plays an important role in the regulation of synaptic transmission in the mammalian brain. In this study, we aimed to investigate the expression pattern of Sorbs2 in a kainic acid (KA)-induced TLE mouse model and in patients with TLE to further determine whether Sorbs2 is involved in seizure activity and to explore the potential mechanism by which Sorbs2 affects seizures in this TLE mouse model. First, we found that the expression of Sorbs2 was obviously increased in the hippocampus and cortex of a TLE mouse model and in the temporal cortex of TLE patients, indicating an abnormal expression pattern of Sorbs2 in TLE. Importantly, subsequent behavioral analyses and local field potential (LFP) analyses of a TLE mouse model demonstrated that the downregulation of hippocampal Sorbs2 could prolong the latency to spontaneous recurrent seizures (SRSs) and protect against SRSs. We also found that the knockdown of Sorbs2 in the hippocampus could decrease excitatory synaptic transmission in pyramidal neurons (PNs) in the hippocampal CA1 region and reduce the expression levels of the AMPAR subunits GluA1 and GluA2. Thus, we speculated that Sorbs2 may promote epileptogenesis and the development of TLE by affecting AMPAR-mediated excitatory synaptic transmission in PNs in the CA1 region. Therefore, reducing the expression of hippocampal Sorbs2 could restrain epileptogenesis and the development of TLE.

3.
Front Med (Lausanne) ; 11: 1359461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495117

RESUMO

Obstructive Sleep Apnea Syndrome (OSAS) affects 13-33% of males and 6-9% of females globally and poses significant treatment challenges, including poor adherence to Continuous Positive Airway Pressure (CPAP) and residual excessive sleepiness (RES). This review aims to elucidate the emerging interest in pharmacological treatments for OSAS, focusing on recent advancements in this area. A thorough analysis of extensive clinical trials involving various drugs, including selective dopamine reuptake inhibitors, selective norepinephrine inhibitors, combined antimuscarinic agents, and orexin agonists, was conducted. These trials focused on ameliorating respiratory metrics and enhancing sleep quality in individuals affected by OSAS. The studied pharmacological agents showed potential in improving primary outcomes, notably the apnea-hypopnea index (AHI) and the Epworth sleepiness scale (ESS). These improvements suggest enhanced sleep quality and symptom management in OSAS patients. With a deeper understanding of OSAS, pharmacological interventions are emerging as a promising direction for its effective management. This review provides a comprehensive overview of the current state of drug research in OSAS, highlighting the potential of these treatments in addressing the disorder's complex challenges.

4.
Planta ; 259(4): 76, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418674

RESUMO

MAIN CONCLUSION: Investigation the expression patterns of GmPT genes in response to various abiotic stresses and overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress. Soybean is considered to be one of the significant oil crops globally, as it offers a diverse range of essential nutrients that contribute to human health. Salt stress seriously affects the yield of soybean through negative impacts on the growth, nodulation, reproduction, and other agronomy traits. The phosphate transporters 1(PHT1) subfamily, which is a part of the PHTs family in plants, is primarily found in the cell membrane and responsible for the uptake and transport of phosphorus. However, the role of GmPT (GmPT1-GmPT14) genes in response to salt stress has not been comprehensively studied. Here, we conducted a systematic analysis to ascertain the distribution and genomic duplications of GmPT genes, as well as their expression patterns in response to various abiotic stresses. Promoter analysis of GmPT genes revealed that six stress-related cis-elements were enriched in these genes. The overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress, while no significant change was observed under low phosphate treatment, suggesting a crucial role in the response to salt stress. These findings provide novel insights into enhancing plant tolerance to salt stress.


Assuntos
Arabidopsis , Soja , Humanos , Soja/genética , Arabidopsis/genética , Estresse Fisiológico/genética , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
5.
J Craniofac Surg ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408325

RESUMO

OBJECTIVES: To observe the clinical effect of recombinant human alkaline fibroblast growth factor (rh-bFGF) combined with collagen sponge in the treatment of maxillofacial deepⅡ degree burn. METHODS: From January 2019 to January 2022, 96 patients with maxillofacial deep Ⅱ degree burns were randomly divided into a control group (N=48) and an observation group (N=48). The observation group was treated with rh-bFGF and collagen sponge after debridement, whereas the control group was treated with silver sulfadiazine ointment after debridement. The healing rate and healing time of the wounds were observed, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, epidermal growth factor (EGF), endothelial growth factor growth factor (VEGF), and metalloproteinase tissue inhibitor 1 (TIMP-1) were measured. Vancouver Scar Scale (VSS) was used to evaluate the local scar at 6 months after wound healing in both groups. RESULTS: On the 10th, 14th, and 21st day of treatment, the wound healing rate in the observation group was higher than that in the control group (P<0.05), the wound healing time in the observation group was lower than that in the control group (P<0.05), and on the 14th day of treatment, the levels of TNF-α and IL-6 in the observation group were lower than those in the control group (P<0.05). The levels of IL-10 in the observation group were higher than those in the control group (P<0.05). The levels of EGF, VEGF, and TIMP-1 in the observation group were higher than those in the control group (P<0.05), and the scores of VSS in the observation group were lower than those in the control group (P<0.05). CONCLUSIONS: Rh-bFGF combined with collagen sponge can decrease the levels of TNF-α and IL-6 and increase the levels of IL-10, which can control the inflammation effectively, at the same time, it can increase the level of EGF, VEGF, and TIMP-1, promote wound healing, and reduce scar hyperplasia. The treatment protocol is simple, safe, effective, and suitable for clinical application.

6.
Analyst ; 149(4): 1002-1021, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204433

RESUMO

The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.


Assuntos
Neoplasias da Mama , DNA (Citosina-5-)-Metiltransferases , Humanos , Feminino , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Neoplasias da Mama/genética , DNA/metabolismo , Biomarcadores/metabolismo
7.
Chem Commun (Camb) ; 60(9): 1168-1171, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38193242

RESUMO

We report an electrochemical device for portable on-site detection of gaseous CH3I based on PVIm-F for the first time. The device achieves detection of gaseous CH3I with a significant selectivity and a low detection limit (0.474 ppb) in 20 min at 50 °C and 50% relative humidity, which is of great significance for achieving real-time on-site monitoring of radioactive hazardous environments.

8.
Talanta ; 269: 125456, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061202

RESUMO

DNA methylation plays an important role in epigenetic modification. DNA methyltransferase (DNMT) is essential in the DNA methylation process, and its abnormal expression is closely related to cancer. In this study, we propose a novel biosensor platform (DS-GlaI-EXPAR) that combines hemi-methylated double-stranded DNA (dsDNA) as the substrate for DNMT1 with GlaI-assisted isothermal exponential amplification reaction (EXPAR) for rapid, simple, and sensitive detection of DNMT1 activity. The hemi-methylated dsDNA is fully methylated by DNMT1, and GlaI recognizes and cleaves the fully methylated sequence, generating terminal fragments that trigger EXPAR for efficient signal amplification. Whereas hemi-methylated dsDNA without DNMT1 will keep intact and cannot initiate EXPAR. DNMT1 activity can therefore be sensitively quantified by the real-time fluorescence signal of the DS-GlaI-EXPAR platform. The high-efficiency amplification of EXPAR and the recognition of GlaI enable the platform to overcome the inherent cumbersome and time-consuming shortcomings of traditional methods while meeting specificity and sensitivity. This DS-GlaI-EXPAR platform offers an impressively low limit of detection of 0.86 pg/µL and the entire detection process can be completed in a short time of 2.5 h in a single tube. Furthermore, DNMT1 activity detected by this platform in MCF-7 cells was significantly higher than that of HEK293 cells, and the inhibition of Apt. #9 was verified. This DNMT1 activity detection platform is very convenient and effective for the discovery of inhibitors and early cancer diagnosis.


Assuntos
DNA , Neoplasias , Humanos , Fluorescência , Células HEK293 , Metilases de Modificação do DNA , Técnicas de Amplificação de Ácido Nucleico/métodos , Metilação de DNA
9.
Phytopathology ; 114(2): 474-483, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37589413

RESUMO

Brassica yellows virus (BrYV) is an economically important virus on cruciferous species. In this study, a one-pot reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system was developed for the detection of BrYV. The limit of detection of this method reached 32.8 copies of the BrYV ORF5, which is 100-fold more sensitive than the RT-LAMP method. Moreover, there was no cross-reactivity with other rapeseed-infecting RNA viruses or poleroviruses. We dried the CRISPR/Cas12a reagent in a trehalose and pullulan mixture to retain its efficacy at the RT-LAMP temperature of 63°C in order to allow portable BrYV detection in a water bath. The entire process can be performed in about 1 h, and a positive result can be rapidly and conveniently detected using a handheld UV lamp. In the field, the RT-LAMP-CRISPR/Cas12a assay was accurate and had higher sensitivity than RT-LAMP and reverse transcription-polymerase chain reaction assays. The novel RT-LAMP-CRISPR/Cas12a assay allows convenient, portable, rapid, low-cost, highly sensitive, and specific detection of BrYV and has great potential for on-site monitoring of BrYV.


Assuntos
Brassica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Transcrição Reversa , Sistemas CRISPR-Cas , Doenças das Plantas
10.
J Pharm Biomed Anal ; 239: 115922, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134706

RESUMO

The amorphous Cu-containing phosphomolybdate (Cu-PTs) composite with high peroxidase (POD)-like activity at neutral conditions was explored as biosensors for raloxifene (RAF) detection. The strong attraction between negatively charged Cu-PTs and positively charged substrates 3,3',5,5'-tetramethylbenzidine (TMB), as well as the acceleration of the conversion of active Cu+/Cu2+ by the Cu/W bimetallic redox couples were demonstrated to play significant roles in POD-like activity in physiological environment. When RAF is presence, it can bind to the surface of Cu-PTs and changes the chemical signal on the material surface, leading to the decreased POD-like activity. Based on this, a colorimetric method was established for the sensitive assay of RAF with a lower limit of detection (LOD) of 0.025 mg/L and good recovery from 90.13% to 108.9%. This work paves a new way to design a POD-like colorimetric protocol for tracing RAF in pharmaceutical products and environmental samples.


Assuntos
Técnicas Biossensoriais , Cloridrato de Raloxifeno , Colorimetria/métodos , Peroxidase , Peroxidases , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio
11.
ACS Sens ; 9(1): 62-72, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38126108

RESUMO

Rapid and simple nucleic acid detection is significant for disease diagnosis and pathogen screening, especially under specific conditions. However, achieving highly sensitive and specific nucleic acid detection to meet the time and equipment demand remains technologically challenging. In this study, we proposed a magnetic separation enhanced colorimetry biosensor based on a toehold-containing three-way junction (TWJ) induced multiple isothermal exponential amplification and the CRISPR/Cas14a (C-TEC) biosensor. The TWJ template was designed as a Y-X-Y structure. In the presence of the target, the formation of toehold-containing TWJ complex induced primer extension, leading to the generation of amplified single-stranded DNA; this amplified DNA could then bind to either the free TWJ template for EXPAR reaction or the toehold of the TWJ complex for toehold-mediated strand displacement, thereby enabling the recycling of the target. The amplification products could trigger CRISPR/Cas14a for efficient trans-cleavage and release the magnetically bound gold nanoparticle probes for colorimetry detection. Using Mycobacterium tuberculosis 16S rDNA as the target, the proposed C-TEC could detect 16S rDNA down to 50 fM by the naked eye and 20.71 fM by UV-vis detector at 520 nm within 90 min under optimal conditions. We successfully applied this biosensor to clinical isolates of Mycobacterium tuberculosis. In addition, the C-TEC biosensor also showed feasibility for the detection of RNA viruses. In conclusion, the proposed C-TEC is a convenient, fast, and versatile platform for visual detection of pathogen DNA/RNA and has potential clinical applications.


Assuntos
Nanopartículas Metálicas , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Ouro/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Nanopartículas Metálicas/química , DNA Ribossômico , Fenômenos Magnéticos
12.
Front Genet ; 14: 1231682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779912

RESUMO

Introduction: Neuropathic pain remains a prevalent and challenging condition to treat, with current therapies often providing inadequate relief. Ozone therapy has emerged as a promising treatment option; however, its mechanisms of action in neuropathic pain remain poorly understood. Methods: In this study, we investigated the effects of ozone treatment on gene expression and metabolite levels in the brainstem and hypothalamus of a rat model, using a combined transcriptomic and metabolomic approach. Results: Our findings revealed significant alterations in key genes, including DCST1 and AIF1L, and metabolites such as Aconitic acid, L-Glutamic acid, UDP-glucose, and Tyrosine. These changes suggest a complex interplay of molecular pathways and region-specific mechanisms underlying the analgesic effects of ozone therapy. Discussion: Our study provides insights into the molecular targets of ozone treatment for neuropathic pain, laying the groundwork for future research on validating these targets and developing novel therapeutic strategies.

13.
Anal Biochem ; 680: 115313, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678583

RESUMO

As newly developed synthetic enzymes with exceptional catalytic capabilities and outstanding stability, nanozymes have drawn considerable interest in the realm of sensing. Using a simple hydrothermal process, iodine and copper-doped carbon dots (Cu,I-CDs) with simulated enzymes were fabricated in the current investigation. Cu,I-CDs demonstrate peroxidase-mimicking function together with high catalytic effectiveness due to aforementioned features. This led to generation of a colorimetric sensor for quick and accurate quantitative assessment of morphine (MOR). The outcomes showed the method's usefulness for the colorimetric detection of MOR. The linear range for MOR detection is 0.25-25 µg/mL having a reduced detection limit of 64 ng/mL. This sensor's successful use in the analysis of MOR in biological material is more noteworthy.


Assuntos
Colorimetria , Cobre , Carbono , Catálise , Derivados da Morfina
14.
Anal Chim Acta ; 1276: 341617, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573107

RESUMO

The detection of single nucleotide variants (SNVs) is important for the diagnosis and treatment of cancer. To date, researchers have devised several methods to detect SNVs, but most of them are complex and time-consuming. To improve SNVs detection specificity and sensitivity, we developed a triple-recognition strategy, which facilitates aligner-mediated cleavage-triggered exponential amplification (Trec-AMC-EXPAR) for the rapid, specific, and one-pot detection of SNV. Under optimized conditions, Trec-AMC-EXPAR detected two clinically significant SNVs, PIK3CAH1047R and EGFR L858R within 80 min, with a reliable detection of 0.1% SNV in the wide type, which is lower than that of allele-specific PCR (AS-PCR) for detecting SNV. Finally, by spiking into normal human serum samples, mutants mixed with the wild-type targets in different ratios were analyzed, resulting in the relative standard deviation (RSD) of recovery ratios <3%. The findings suggested the potential application of Trec-AMC-EXPAR in clinical disease diagnosis. In summary, the proposed Trec-AMC-EXPAR technique provides a novel fast and convenient method for one-pot detection of SNV with high sensitivity and specificity.

15.
Emerg Microbes Infect ; 12(1): 2207670, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37272331

RESUMO

SARS-CoV-2 Omicron subvariants have become the predominantly strain in most countries. However, the neutralizing activity of the human serum after Omicron-based vaccine booster against different SARS-CoV-2 variants is poorly understood. Here, we developed an update Omicron vaccine (SCoK-Omicron), based on the RBD-Fc fusion protein vaccine (SCoK) and RBD domain of Omicron BA.1. To assess cross-variant neutralizing activity in adults, 25 volunteers that have received three doses of SCoK and 25 volunteers with two doses of CoronaVac (inactive vaccine) were further boosted with a dose updated vaccine (SCoK-Omicron). The results of pseudovirus neutralization assays demonstrated that the booster potently induced the high-level of neutralizing antibody against SARS-CoV-2 Wild type, Delta and Omicron subvariants in adults. Further assays of single point mutations showed that K444T, L452R, N460K, or F486V was key mutations to cause immune evasion. Together, these data suggest that SCOK-Omicron can be used as a booster vaccine candidate in adults receiving subunit protein or inactivated vaccine in response to the epidemic of COVID-19 Omicron subvariants, and the mutation K444T, L452R, N460K, or F486V needs to be considered in future vaccine design.


Assuntos
COVID-19 , Vacinas , Humanos , Adulto , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais
16.
Adv Sci (Weinh) ; 10(20): e2207474, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37162232

RESUMO

Vaccination is a cost-effective medical intervention. Inactivated whole virusor large protein fragments-based severe acute respiratory syndrome coronavirus (SARS-CoV-2) vaccines have high unnecessary antigenic load to induce allergenicity and/orreactogenicity, which can be avoided by peptide vaccines of short peptide fragments that may induce highly targeted immune response. However, epitope identification and peptide delivery remain the major obstacles in developing peptide vaccines. Here, a multi-source data integrated linear B-cell epitope screening strategy is presented and a linear B-cell epitope enriched hotspot region is identified in Spike protein, from which a monomeric peptide vaccine (Epitope25) is developed and applied to subcutaneously immunize wildtype BALB/c mice. Indirect ELISA assay reveals specific and dose-dependent binding between Epitope25 and serum IgG antibodies from immunized mice. The neutralizing activity of sera from vaccinated mice is validated by pseudo and live SARS-CoV-2 wild-type strain neutralization assays. Then a dissolvable microneedle array (DMNA) is developed to pain-freely deliver Epitope25. Compared with intramuscular injection, DMNA and subcutaneous injection elicit neutralizing activities against SARS-CoV-2 wild-type strain as demonstrated by live SARS-CoV-2 virus neutralization assay. No obvious damages are found in major organs of immunized mice. This study may lay the foundation for developing linear B-cell epitope-based vaccines against SARS-CoV-2.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2 , Glicoproteínas de Membrana , Proteínas do Envelope Viral , Epitopos de Linfócito B , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Testes de Neutralização , COVID-19/prevenção & controle , Vacinas de Subunidades
18.
PNAS Nexus ; 2(4): pgad079, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37065616

RESUMO

Acinetobacter baumannii has been listed as one of the most critical pathogens in nosocomial infections; however, the key genes and mechanisms to adapt to the host microenvironment lack in-depth understanding. In this study, a total of 76 isolates (from 8 to 12 isolates per patient, spanning 128 to 188 days) were longitudinally collected from eight patients to investigate the within-host evolution of A. baumannii. A total of 70 within-host mutations were identified, 80% of which were nonsynonymous, indicating the important role of positive selection. Several evolutionary strategies of A. baumannii to increase its potential to adapt to the host microenvironment were identified, including hypermutation and recombination. Six genes were mutated in isolates from two or more patients, including two TonB-dependent receptor genes (bauA and BJAB07104_RS00665). In particular, the siderophore receptor gene bauA was mutated in multiple isolates from four patients with three MLST types, and all mutations were at amino acid 391 in ligand-binding sites. With 391T or 391A, BauA was more strongly bound to siderophores, which promoted the iron-absorption activity of A. baumannii at acidic or neutral pH, respectively. Through the A/T mutation at site 391 of BauA, A. baumannii displayed two reversible phases to adapt to distinct pH microenvironments. In conclusion, we demonstrated the comprehensive within-host evolutionary dynamics of A. baumannii, and discovered a key mutation of BauA site 391 as a genetic switch to adapt to different pH values, which may represent a model in the pathogen evolutionary adaption of the host microenvironment.

19.
Am J Transl Res ; 15(3): 2233-2240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056867

RESUMO

OBJECTIVE: To explore the clinical application of acellular allogenic dermis combined with VSD in repairing abdominal wall defect combined with abdominal infection. METHODS: Clinical data of 5 cases of abdominal cavity infection with abdominal wall defect admitted in the Burn Department of Quanzhou First Hospital from January 2019 to January 2022 were collected for this study. The abdominal cavity was closed temporarily after debridement and VSD in the early stage, and the abdominal wall defect was repaired by acellular allogeneic dermis combined with autologous split-thickness skin graft in the second stage. The changes of infection indexes (WBC, CRP, PCT, Lac) before and after treatment and the clinical therapeutic effect were observed. RESULTS: In the 5 observed cases, the infection index decreased significantly, the intra-abdominal pressure was normal, and there was no abdominal wall hernia, intestinal adhesion, intestinal obstruction or any other complications. The wound of abdominal wall defect achieved stage 1 healing, the local scar tissue only has slight proliferation, and the appearance was satisfying. There was no recurrence in 6 months follow-up. CONCLUSION: Early use of VSD can effectively control abdominal infection and reduce the occurrence of intestinal fistula or other complications. In the later stage of treatment, acellular allogenic dermis combined with autologous split-thickness skin graft can effectively repair abdominal wall defect.

20.
J Craniofac Surg ; 34(2): 759-763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730681

RESUMO

OBJECTIVES: To investigate the clinical outcome of autogenous dermis combined with local flap transplantation in the treatment of titanium mesh exposure after cranioplasty. METHODS: We studied a total of 8 patients with titanium mesh exposure after cranioplasty. After debridement of the head wound, the autogenous dermal tissue from the lateral thigh was transplanted to the surface of titanium mesh, and the local skin flap was then applied after suturing and fixation to repair the wound on the surface of the dermis. To repair the lateral thigh dermal tissue area, a local skin flap was obtained, and a blade thick skin graft was used. RESULTS: Both dermal tissue and local skin flap survived. In the meanwhile, the donor skin area of the lateral thigh healed well, with only slight scar hyperplasia, and the titanium mesh was preserved. There was no recurrence after 6 months of follow-up. CONCLUSIONS: The application of autogenous dermis combined with local skin flap to repair titanium mesh exposure can effectively avoid skin flap necrosis, potential re-exposure of titanium mesh, sub-flap effusion, infection, and other problems. This method has an ideal effect, has easy access to materials, and reduces patients' economic burden. It is worth popularizing.


Assuntos
Implantes Dentários , Retalho Perfurante , Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Humanos , Titânio , Telas Cirúrgicas , Transplante de Pele , Resultado do Tratamento , Lesões dos Tecidos Moles/cirurgia , Derme/cirurgia , Retalho Perfurante/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...